Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines

نویسندگان

  • Byeongseon Jeong
  • Hong Oh Kim
  • Yeon Ju Lee
  • Jungho Yoon
چکیده

One of the important capabilities for a subdivision scheme is the reproducing property of circular shapes or parts of conics that are important analytical shapes in geometrical modelling. In this regards, the first goal of this study is to provide necessary and sufficient conditions for a non-stationary subdivision to have the reproducing property of exponential polynomials. The result in fact extends the work of Dyn et al. [12], where the conditions for algebraic polynomial reproduction are discussed, to the case of non-stationary schemes. Then, we provide the approximation order of a non-stationary scheme reproducing a certain set of exponential polynomials. Next, we find that an exponential B-spline generates exponential polynomials in the associated spaces, but it may not reproduce any exponential polynomials. Thus, we present normalized exponential B-splines that reproduce certain sets of exponential polynomials. One interesting feature is that depending on the normalization factor, the set of exponential polynomials to be reproduced is varied. This provides us with the necessary accuracy and flexibility in designing target curves and surfaces. Some numerical results are presented to support the advantages of the normalized scheme by comparing them to the results without normalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C. Conti, L. Gemignani, L. Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971– 1987] to full generality by rem...

متن کامل

Beyond B-splines: exponential pseudo-splines and subdivision schemes reproducing exponential polynomials

The main goal of this paper is to present some generalizations of polynomial B-splines, which include exponential B-splines and the larger family of exponential pseudo-splines. We especially focus on their connections to subdivision schemes. In addition, we generalize a well-known result on the approximation order of exponential pseudo-splines, providing conditions to establish the approximatio...

متن کامل

Exponential Pseudo-Splines: looking beyond Exponential B-splines

Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reprod...

متن کامل

A New Class of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials

We present a new class of non-stationary, interpolatory subdivision schemes that can exactly reconstruct parametric surfaces including exponential polynomials. The subdivision rules in our scheme are interpolatory and are obtained using the property of reproducing exponential polynomials which constitute a shift-invariant space. It enables our scheme to exactly reproduce rotational features in ...

متن کامل

Analysis of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials

In this study, we are concerned with non-stationary interpolatory subdivision schemes with refinement rules which may vary from level to level. First, we derive a new class of interpolatory non-stationary subdivision schemes reproducing exponential polynomials. Next, we prove that non-stationary schemes based on the known butterfly-shaped stencils possess the same smoothness as the known Butter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013